MVision AI

Knowledge Center

Accuracy

Emin, S., Rossi, E., Hedman, M., Giovenco, M., Villegas, F., & Onjukka, E. (2025). Performance of multi-vendor auto-segmentation models for thoracic organs at risk trained on a single dataset. Physica Medica, 137, 105089. https://doi.org/10.1016/j.ejmp.2025.105089

Kiljunen, T., Akram, S., Niemelä, J., Löyttyniemi, E., Seppälä, J., Heikkilä, J., Vuolukka, K., Kääriäinen, O.-S., Heikkilä, V.-P., Lehtiö, K., Nikkinen, J., Gershkevitsh, E., Borkvel, A., Adamson, M., Zolotuhhin, D., Kolk, K., Pang, E. P. P., Tuan, J. K. L., Master, Z., … Keyriläinen, J. (2020). A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study. Diagnostics, 10(11), 959. https://doi.org/10.3390/diagnostics10110959

Olsson, C.E., Suresh, R., Niemelä, J., Akram, S. U., & Valdman, A. (2022). Autosegmentation based on different-sized training datasets of consistently-curated volumes and impact on rectal contours in prostate cancer radiation therapy. Physics and Imaging in Radiation Oncology, 22, 67–72. https://doi.org/10.1016/j.phro.2022.04.007

Strolin, S., Santoro, M., Paolani, G., Ammendolia, I., Arcelli, A., Benini, A., Bisello, S., Cardano, R., Cavallini, L., Deraco, E., Donati, C. M., Galietta, E., Galuppi, A., Guido, A., Ferioli, M., Laghi, V., Medici, F., Ntreta, M., Razganiayeva, N., … Strigari, L. (2023). How smart is artificial intelligence in organs delineation? testing a CE and FDA-approved deep-learning tool using multiple expert contours delineated on planning CT images. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1089807

Turcas, A., Leucuta, D., Balan, C., Clementel, E., Gheara, C., Kacso, A., Kelly, S. M., Tanasa, D., Cernea, D., & Achimas-Cadariu, P. (2023). Deep-Learning Magnetic Resonance Imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution. Physics and Imaging in Radiation Oncology, 27, 100454. https://doi.org/10.1016/j.phro.2023.100454

Doolan, P. J., Charalambous, S., Roussakis, Y., Leczynski, A., Peratikou, M., Benjamin, M., Ferentinos, K., Strouthos, I., Zamboglou, C., & Karagiannis, E. (2023). A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1213068

Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020

Melerowitz, L., Sreenivasa, S., Nachbar, M., Stsefanenka, A., Beck, M., Senger, C., Predescu, N., Ullah Akram, S., Budach, V., Zips, D., Heiland, M., Nahles, S., & Stromberger, C. (2024). Design and evaluation of a Deep Learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net. Clinical and Translational Radiation Oncology, 47, 100780. https://doi.org/10.1016/j.ctro.2024.100780

Meixner, E., Glogauer, B., Klüter, S., Wagner, F., Neugebauer, D., Hoeltgen, L., Dinges, L. A., Harrabi, S., Liermann, J., Vinsensia, M., Weykamp, F., Hoegen-Saßmannshausen, P., Debus, J., & Hörner-Rieber, J. (2024). Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation. Clinical and Translational Radiation Oncology, 49, 100855. https://doi.org/10.1016/j.ctro.2024.100855

Bordigoni, B., Trivellato, S., Pellegrini, R., Meregalli, S., Bonetto, E., Belmonte, M., Castellano, M., Panizza, D., Arcangeli, S., & De Ponti, E. (2024). Automated segmentation in pelvic radiotherapy: A comprehensive evaluation of atlas-, machine learning-, and Deep Learning-based models. Physica Medica, 125, 104486. https://doi.org/10.1016/j.ejmp.2024.104486

Miura, H., Ishihara, S., Kenjo, M., Nakao, M., Ozawa, S., & Kagemoto, M. (2025). Evaluation of the accuracy of automated segmentation based on Deep Learning for Prostate Cancer Patients. Medical Dosimetry, 50(1), 91–95. https://doi.org/10.1016/j.meddos.2024.09.002

Meyer, C., Huger, S., Bruand, M., Leroy, T., Palisson, J., Rétif, P., Sarrade, T., Barateau, A., Renard, S., Jolnerovski, M., Demogeot, N., Marcel, J., Martz, N., Stefani, A., Sellami, S., Jacques, J., Agnoux, E., Gehin, W., Trampetti, I., … Faivre, J.-C. (2024). Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas. Radiation Oncology, 19(1). https://doi.org/10.1186/s13014-024-02554-y

Miura, H., Ishihara, S., Kenjo, M., Nakao, M., Ozawa, S., & Kagemoto, M. (2025b). Performance evaluation of MVision AI contour+ in Gastric malt lymphoma segmentation. Reports of Practical Oncology and Radiotherapy, 30(1), 122–125. https://doi.org/10.5603/rpor.104144

Pang, E. P., Tan, H. Q., Wang, F., Niemelä, J., Bolard, G., Ramadan, S., Kiljunen, T., Capala, M., Petit, S., Seppälä, J., Vuolukka, K., Kiitam, I., Zolotuhhin, D., Gershkevitsh, E., Lehtiö, K., Nikkinen, J., Keyriläinen, J., Mokka, M., & Chua, M. L. (2025). Multicentre evaluation of deep learning CT Autosegmentation of the head and neck region for radiotherapy. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01624-z

Clinical Acceptability

Emin, S., Rossi, E., Hedman, M., Giovenco, M., Villegas, F., & Onjukka, E. (2025). Performance of multi-vendor auto-segmentation models for thoracic organs at risk trained on a single dataset. Physica Medica, 137, 105089. https://doi.org/10.1016/j.ejmp.2025.105089

Strolin, S., Santoro, M., Paolani, G., Ammendolia, I., Arcelli, A., Benini, A., Bisello, S., Cardano, R., Cavallini, L., Deraco, E., Donati, C. M., Galietta, E., Galuppi, A., Guido, A., Ferioli, M., Laghi, V., Medici, F., Ntreta, M., Razganiayeva, N., … Strigari, L. (2023). How smart is artificial intelligence in organs delineation? testing a CE and FDA-approved deep-learning tool using multiple expert contours delineated on planning CT images. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1089807

Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020

Meixner, E., Glogauer, B., Klüter, S., Wagner, F., Neugebauer, D., Hoeltgen, L., Dinges, L. A., Harrabi, S., Liermann, J., Vinsensia, M., Weykamp, F., Hoegen-Saßmannshausen, P., Debus, J., & Hörner-Rieber, J. (2024). Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation. Clinical and Translational Radiation Oncology, 49, 100855. https://doi.org/10.1016/j.ctro.2024.100855

Meyer, C., Huger, S., Bruand, M., Leroy, T., Palisson, J., Rétif, P., Sarrade, T., Barateau, A., Renard, S., Jolnerovski, M., Demogeot, N., Marcel, J., Martz, N., Stefani, A., Sellami, S., Jacques, J., Agnoux, E., Gehin, W., Trampetti, I., … Faivre, J.-C. (2024). Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas. Radiation Oncology, 19(1). https://doi.org/10.1186/s13014-024-02554-y

Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255

Time Saving

Chick, J., Casey, F., Cooper, S., Herbert, T., Alexander, S., Predescu, N., Lőrincz-Molnár, S.-B., Nill, S., Oelfke, U., Tree, A., & Dunlop, A. (2025). Towards rapid and efficient simulation-free radiotherapy: MR guided adaptive prostate radiotherapy on the MR-Linac using diagnostic MRI reference planning. Radiotherapy and Oncology, 211, 111053. https://doi.org/10.1016/j.radonc.2025.111053

Malone, C., Nicholson, J., Ryan, S., Thirion, P., Woods, R., McBride, P., McArdle, O., Duane, F., Hanna, G. G., McClean, B., & Brennan, S. (2025). Real world ai-driven segmentation: Efficiency gains and workflow challenges in radiotherapy. Radiotherapy and Oncology, 209, 110977. https://doi.org/10.1016/j.radonc.2025.110977

Kiljunen, T., Akram, S., Niemelä, J., Löyttyniemi, E., Seppälä, J., Heikkilä, J., Vuolukka, K., Kääriäinen, O.-S., Heikkilä, V.-P., Lehtiö, K., Nikkinen, J., Gershkevitsh, E., Borkvel, A., Adamson, M., Zolotuhhin, D., Kolk, K., Pang, E. P. P., Tuan, J. K. L., Master, Z., … Keyriläinen, J. (2020). A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study. Diagnostics, 10(11), 959. https://doi.org/10.3390/diagnostics10110959

Strolin, S., Santoro, M., Paolani, G., Ammendolia, I., Arcelli, A., Benini, A., Bisello, S., Cardano, R., Cavallini, L., Deraco, E., Donati, C. M., Galietta, E., Galuppi, A., Guido, A., Ferioli, M., Laghi, V., Medici, F., Ntreta, M., Razganiayeva, N., … Strigari, L. (2023). How smart is artificial intelligence in organs delineation? testing a CE and FDA-approved deep-learning tool using multiple expert contours delineated on planning CT images. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1089807

Turcas, A., Leucuta, D., Balan, C., Clementel, E., Gheara, C., Kacso, A., Kelly, S. M., Tanasa, D., Cernea, D., & Achimas-Cadariu, P. (2023). Deep-Learning Magnetic Resonance Imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution. Physics and Imaging in Radiation Oncology, 27, 100454. https://doi.org/10.1016/j.phro.2023.100454

Doolan, P. J., Charalambous, S., Roussakis, Y., Leczynski, A., Peratikou, M., Benjamin, M., Ferentinos, K., Strouthos, I., Zamboglou, C., & Karagiannis, E. (2023). A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1213068

Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020

Melerowitz, L., Sreenivasa, S., Nachbar, M., Stsefanenka, A., Beck, M., Senger, C., Predescu, N., Ullah Akram, S., Budach, V., Zips, D., Heiland, M., Nahles, S., & Stromberger, C. (2024). Design and evaluation of a Deep Learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net. Clinical and Translational Radiation Oncology, 47, 100780. https://doi.org/10.1016/j.ctro.2024.100780

Bordigoni, B., Trivellato, S., Pellegrini, R., Meregalli, S., Bonetto, E., Belmonte, M., Castellano, M., Panizza, D., Arcangeli, S., & De Ponti, E. (2024). Automated segmentation in pelvic radiotherapy: A comprehensive evaluation of atlas-, machine learning-, and Deep Learning-based models. Physica Medica, 125, 104486. https://doi.org/10.1016/j.ejmp.2024.104486

Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255

Pang, E. P., Tan, H. Q., Wang, F., Niemelä, J., Bolard, G., Ramadan, S., Kiljunen, T., Capala, M., Petit, S., Seppälä, J., Vuolukka, K., Kiitam, I., Zolotuhhin, D., Gershkevitsh, E., Lehtiö, K., Nikkinen, J., Keyriläinen, J., Mokka, M., & Chua, M. L. (2025). Multicentre evaluation of deep learning CT Autosegmentation of the head and neck region for radiotherapy. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01624-z

Workflow Impact

Chick, J., Casey, F., Cooper, S., Herbert, T., Alexander, S., Predescu, N., Lőrincz-Molnár, S.-B., Nill, S., Oelfke, U., Tree, A., & Dunlop, A. (2025). Towards rapid and efficient simulation-free radiotherapy: MR guided adaptive prostate radiotherapy on the MR-Linac using diagnostic MRI reference planning. Radiotherapy and Oncology, 211, 111053. https://doi.org/10.1016/j.radonc.2025.111053

Malone, C., Nicholson, J., Ryan, S., Thirion, P., Woods, R., McBride, P., McArdle, O., Duane, F., Hanna, G. G., McClean, B., & Brennan, S. (2025). Real world ai-driven segmentation: Efficiency gains and workflow challenges in radiotherapy. Radiotherapy and Oncology, 209, 110977. https://doi.org/10.1016/j.radonc.2025.110977

Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020

Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255

Dosimetric Impact

Emin, S., Rossi, E., Hedman, M., Giovenco, M., Villegas, F., & Onjukka, E. (2025). Performance of multi-vendor auto-segmentation models for thoracic organs at risk trained on a single dataset. Physica Medica, 137, 105089. https://doi.org/10.1016/j.ejmp.2025.105089

Turcas, A., Leucuta, D., Balan, C., Clementel, E., Gheara, C., Kacso, A., Kelly, S. M., Tanasa, D., Cernea, D., & Achimas-Cadariu, P. (2023). Deep-Learning Magnetic Resonance Imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution. Physics and Imaging in Radiation Oncology, 27, 100454. https://doi.org/10.1016/j.phro.2023.100454

Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020

Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255