MVision AI
Knowledge Center
Dose+ for Radiotherapy: MVision AI Webinar on AI-Based Dose Prediction
Clinical User Experience with MVision AI
The Importance of Guidelines and Standards in Radiotherapy
MVision AI Appoints Rachel Buckingham as Customer Success Manager
MVision AI Working on Agreement to Offer Contour+ Access™ with Philips CT Simulators
MVision AI Founder Mahmudul Hasan Returns as CEO to Lead Next Phase of Growth
MVision AI Announces Distribution Partnership with Meditest in France
MVision AI’s Dose+ Receives FDA 510(k) Clearance for Clinical Use in the United States
MVision AI’s Dose+ Receives Market Approval in Australia
MVision AI Announces Distribution Partnership with Active Medika in Morocco
MVision AI Secures €2.8M Business Finland R&D Funding to Advance Radiotherapy Innovation
Guiding Science with Purpose: MVision AI Welcomes Gregory Bolard as New CSO
MVision AI’s Contour+ Receives Market Approval in Morocco
MVision AI’s Contour+ Approved for Clinical Use in Singapore
MVision AI’s Contour+ Receives Market Clearance in the United Arab Emirates
Accuracy
Emin, S., Rossi, E., Hedman, M., Giovenco, M., Villegas, F., & Onjukka, E. (2025). Performance of multi-vendor auto-segmentation models for thoracic organs at risk trained on a single dataset. Physica Medica, 137, 105089. https://doi.org/10.1016/j.ejmp.2025.105089
Kiljunen, T., Akram, S., Niemelä, J., Löyttyniemi, E., Seppälä, J., Heikkilä, J., Vuolukka, K., Kääriäinen, O.-S., Heikkilä, V.-P., Lehtiö, K., Nikkinen, J., Gershkevitsh, E., Borkvel, A., Adamson, M., Zolotuhhin, D., Kolk, K., Pang, E. P. P., Tuan, J. K. L., Master, Z., … Keyriläinen, J. (2020). A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study. Diagnostics, 10(11), 959. https://doi.org/10.3390/diagnostics10110959
Olsson, C.E., Suresh, R., Niemelä, J., Akram, S. U., & Valdman, A. (2022). Autosegmentation based on different-sized training datasets of consistently-curated volumes and impact on rectal contours in prostate cancer radiation therapy. Physics and Imaging in Radiation Oncology, 22, 67–72. https://doi.org/10.1016/j.phro.2022.04.007
Strolin, S., Santoro, M., Paolani, G., Ammendolia, I., Arcelli, A., Benini, A., Bisello, S., Cardano, R., Cavallini, L., Deraco, E., Donati, C. M., Galietta, E., Galuppi, A., Guido, A., Ferioli, M., Laghi, V., Medici, F., Ntreta, M., Razganiayeva, N., … Strigari, L. (2023). How smart is artificial intelligence in organs delineation? testing a CE and FDA-approved deep-learning tool using multiple expert contours delineated on planning CT images. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1089807
Turcas, A., Leucuta, D., Balan, C., Clementel, E., Gheara, C., Kacso, A., Kelly, S. M., Tanasa, D., Cernea, D., & Achimas-Cadariu, P. (2023). Deep-Learning Magnetic Resonance Imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution. Physics and Imaging in Radiation Oncology, 27, 100454. https://doi.org/10.1016/j.phro.2023.100454
Doolan, P. J., Charalambous, S., Roussakis, Y., Leczynski, A., Peratikou, M., Benjamin, M., Ferentinos, K., Strouthos, I., Zamboglou, C., & Karagiannis, E. (2023). A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1213068
Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020
Melerowitz, L., Sreenivasa, S., Nachbar, M., Stsefanenka, A., Beck, M., Senger, C., Predescu, N., Ullah Akram, S., Budach, V., Zips, D., Heiland, M., Nahles, S., & Stromberger, C. (2024). Design and evaluation of a Deep Learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net. Clinical and Translational Radiation Oncology, 47, 100780. https://doi.org/10.1016/j.ctro.2024.100780
Meixner, E., Glogauer, B., Klüter, S., Wagner, F., Neugebauer, D., Hoeltgen, L., Dinges, L. A., Harrabi, S., Liermann, J., Vinsensia, M., Weykamp, F., Hoegen-Saßmannshausen, P., Debus, J., & Hörner-Rieber, J. (2024). Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation. Clinical and Translational Radiation Oncology, 49, 100855. https://doi.org/10.1016/j.ctro.2024.100855
Bordigoni, B., Trivellato, S., Pellegrini, R., Meregalli, S., Bonetto, E., Belmonte, M., Castellano, M., Panizza, D., Arcangeli, S., & De Ponti, E. (2024). Automated segmentation in pelvic radiotherapy: A comprehensive evaluation of atlas-, machine learning-, and Deep Learning-based models. Physica Medica, 125, 104486. https://doi.org/10.1016/j.ejmp.2024.104486
Miura, H., Ishihara, S., Kenjo, M., Nakao, M., Ozawa, S., & Kagemoto, M. (2025). Evaluation of the accuracy of automated segmentation based on Deep Learning for Prostate Cancer Patients. Medical Dosimetry, 50(1), 91–95. https://doi.org/10.1016/j.meddos.2024.09.002
Meyer, C., Huger, S., Bruand, M., Leroy, T., Palisson, J., Rétif, P., Sarrade, T., Barateau, A., Renard, S., Jolnerovski, M., Demogeot, N., Marcel, J., Martz, N., Stefani, A., Sellami, S., Jacques, J., Agnoux, E., Gehin, W., Trampetti, I., … Faivre, J.-C. (2024). Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas. Radiation Oncology, 19(1). https://doi.org/10.1186/s13014-024-02554-y
Miura, H., Ishihara, S., Kenjo, M., Nakao, M., Ozawa, S., & Kagemoto, M. (2025b). Performance evaluation of MVision AI contour+ in Gastric malt lymphoma segmentation. Reports of Practical Oncology and Radiotherapy, 30(1), 122–125. https://doi.org/10.5603/rpor.104144
Pang, E. P., Tan, H. Q., Wang, F., Niemelä, J., Bolard, G., Ramadan, S., Kiljunen, T., Capala, M., Petit, S., Seppälä, J., Vuolukka, K., Kiitam, I., Zolotuhhin, D., Gershkevitsh, E., Lehtiö, K., Nikkinen, J., Keyriläinen, J., Mokka, M., & Chua, M. L. (2025). Multicentre evaluation of deep learning CT Autosegmentation of the head and neck region for radiotherapy. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01624-z
Clinical Acceptability
Emin, S., Rossi, E., Hedman, M., Giovenco, M., Villegas, F., & Onjukka, E. (2025). Performance of multi-vendor auto-segmentation models for thoracic organs at risk trained on a single dataset. Physica Medica, 137, 105089. https://doi.org/10.1016/j.ejmp.2025.105089
Strolin, S., Santoro, M., Paolani, G., Ammendolia, I., Arcelli, A., Benini, A., Bisello, S., Cardano, R., Cavallini, L., Deraco, E., Donati, C. M., Galietta, E., Galuppi, A., Guido, A., Ferioli, M., Laghi, V., Medici, F., Ntreta, M., Razganiayeva, N., … Strigari, L. (2023). How smart is artificial intelligence in organs delineation? testing a CE and FDA-approved deep-learning tool using multiple expert contours delineated on planning CT images. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1089807
Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020
Meixner, E., Glogauer, B., Klüter, S., Wagner, F., Neugebauer, D., Hoeltgen, L., Dinges, L. A., Harrabi, S., Liermann, J., Vinsensia, M., Weykamp, F., Hoegen-Saßmannshausen, P., Debus, J., & Hörner-Rieber, J. (2024). Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation. Clinical and Translational Radiation Oncology, 49, 100855. https://doi.org/10.1016/j.ctro.2024.100855
Meyer, C., Huger, S., Bruand, M., Leroy, T., Palisson, J., Rétif, P., Sarrade, T., Barateau, A., Renard, S., Jolnerovski, M., Demogeot, N., Marcel, J., Martz, N., Stefani, A., Sellami, S., Jacques, J., Agnoux, E., Gehin, W., Trampetti, I., … Faivre, J.-C. (2024). Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas. Radiation Oncology, 19(1). https://doi.org/10.1186/s13014-024-02554-y
Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255
Time Saving
Chick, J., Casey, F., Cooper, S., Herbert, T., Alexander, S., Predescu, N., Lőrincz-Molnár, S.-B., Nill, S., Oelfke, U., Tree, A., & Dunlop, A. (2025). Towards rapid and efficient simulation-free radiotherapy: MR guided adaptive prostate radiotherapy on the MR-Linac using diagnostic MRI reference planning. Radiotherapy and Oncology, 211, 111053. https://doi.org/10.1016/j.radonc.2025.111053
Malone, C., Nicholson, J., Ryan, S., Thirion, P., Woods, R., McBride, P., McArdle, O., Duane, F., Hanna, G. G., McClean, B., & Brennan, S. (2025). Real world ai-driven segmentation: Efficiency gains and workflow challenges in radiotherapy. Radiotherapy and Oncology, 209, 110977. https://doi.org/10.1016/j.radonc.2025.110977
Kiljunen, T., Akram, S., Niemelä, J., Löyttyniemi, E., Seppälä, J., Heikkilä, J., Vuolukka, K., Kääriäinen, O.-S., Heikkilä, V.-P., Lehtiö, K., Nikkinen, J., Gershkevitsh, E., Borkvel, A., Adamson, M., Zolotuhhin, D., Kolk, K., Pang, E. P. P., Tuan, J. K. L., Master, Z., … Keyriläinen, J. (2020). A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study. Diagnostics, 10(11), 959. https://doi.org/10.3390/diagnostics10110959
Strolin, S., Santoro, M., Paolani, G., Ammendolia, I., Arcelli, A., Benini, A., Bisello, S., Cardano, R., Cavallini, L., Deraco, E., Donati, C. M., Galietta, E., Galuppi, A., Guido, A., Ferioli, M., Laghi, V., Medici, F., Ntreta, M., Razganiayeva, N., … Strigari, L. (2023). How smart is artificial intelligence in organs delineation? testing a CE and FDA-approved deep-learning tool using multiple expert contours delineated on planning CT images. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1089807
Turcas, A., Leucuta, D., Balan, C., Clementel, E., Gheara, C., Kacso, A., Kelly, S. M., Tanasa, D., Cernea, D., & Achimas-Cadariu, P. (2023). Deep-Learning Magnetic Resonance Imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution. Physics and Imaging in Radiation Oncology, 27, 100454. https://doi.org/10.1016/j.phro.2023.100454
Doolan, P. J., Charalambous, S., Roussakis, Y., Leczynski, A., Peratikou, M., Benjamin, M., Ferentinos, K., Strouthos, I., Zamboglou, C., & Karagiannis, E. (2023). A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1213068
Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020
Melerowitz, L., Sreenivasa, S., Nachbar, M., Stsefanenka, A., Beck, M., Senger, C., Predescu, N., Ullah Akram, S., Budach, V., Zips, D., Heiland, M., Nahles, S., & Stromberger, C. (2024). Design and evaluation of a Deep Learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net. Clinical and Translational Radiation Oncology, 47, 100780. https://doi.org/10.1016/j.ctro.2024.100780
Bordigoni, B., Trivellato, S., Pellegrini, R., Meregalli, S., Bonetto, E., Belmonte, M., Castellano, M., Panizza, D., Arcangeli, S., & De Ponti, E. (2024). Automated segmentation in pelvic radiotherapy: A comprehensive evaluation of atlas-, machine learning-, and Deep Learning-based models. Physica Medica, 125, 104486. https://doi.org/10.1016/j.ejmp.2024.104486
Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255
Pang, E. P., Tan, H. Q., Wang, F., Niemelä, J., Bolard, G., Ramadan, S., Kiljunen, T., Capala, M., Petit, S., Seppälä, J., Vuolukka, K., Kiitam, I., Zolotuhhin, D., Gershkevitsh, E., Lehtiö, K., Nikkinen, J., Keyriläinen, J., Mokka, M., & Chua, M. L. (2025). Multicentre evaluation of deep learning CT Autosegmentation of the head and neck region for radiotherapy. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-025-01624-z
Workflow Impact
Chick, J., Casey, F., Cooper, S., Herbert, T., Alexander, S., Predescu, N., Lőrincz-Molnár, S.-B., Nill, S., Oelfke, U., Tree, A., & Dunlop, A. (2025). Towards rapid and efficient simulation-free radiotherapy: MR guided adaptive prostate radiotherapy on the MR-Linac using diagnostic MRI reference planning. Radiotherapy and Oncology, 211, 111053. https://doi.org/10.1016/j.radonc.2025.111053
Malone, C., Nicholson, J., Ryan, S., Thirion, P., Woods, R., McBride, P., McArdle, O., Duane, F., Hanna, G. G., McClean, B., & Brennan, S. (2025). Real world ai-driven segmentation: Efficiency gains and workflow challenges in radiotherapy. Radiotherapy and Oncology, 209, 110977. https://doi.org/10.1016/j.radonc.2025.110977
Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020
Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255
Dosimetric Impact
Emin, S., Rossi, E., Hedman, M., Giovenco, M., Villegas, F., & Onjukka, E. (2025). Performance of multi-vendor auto-segmentation models for thoracic organs at risk trained on a single dataset. Physica Medica, 137, 105089. https://doi.org/10.1016/j.ejmp.2025.105089
Turcas, A., Leucuta, D., Balan, C., Clementel, E., Gheara, C., Kacso, A., Kelly, S. M., Tanasa, D., Cernea, D., & Achimas-Cadariu, P. (2023). Deep-Learning Magnetic Resonance Imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution. Physics and Imaging in Radiation Oncology, 27, 100454. https://doi.org/10.1016/j.phro.2023.100454
Warren, S., Richmond, N., Wowk, A., Wilkinson, M., & Wright, K. (2023). Ai segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM-Translation, 6–8, 100020. https://doi.org/10.1016/j.ipemt.2023.100020
Langmack, K. A., Alexander, G. G., Gardiner, J., McKenna, A., & Shawcroft, E. (2024). An audit of the impact of the introduction of a commercial artificial intelligence-driven auto-contouring tool into a radiotherapy department. British Journal of Radiology, 98(1167), 375–382. https://doi.org/10.1093/bjr/tqae255